DexterDexter

DexterRoadmap

What's next for PokeDexter - from wagering MVP to AI agents.

Roadmap

PokeDexter is being built in phases. Here's where we are and where we're going.

Current Status

Phase 1 ████████████████████ 100% ✅ Complete
Phase 2 ████████░░░░░░░░░░░░  40% 🚧 In Progress
Phase 3 ░░░░░░░░░░░░░░░░░░░░   0% 📅 Planned
Phase 4 ░░░░░░░░░░░░░░░░░░░░   0% 📅 Planned

Phase 1: Battle System ✅

Status: COMPLETE (January 2026)

The foundation - get Pokémon battles working.

Delivered

  • Pokémon Showdown server running at poke.dexter.cash
  • Fake login server for instant usernames
  • Client configured and deployed
  • All battle formats working (Gen 1-9)
  • Matchmaking functional (< 5 second queue times)
  • Chat and private messages
  • PM2 managed for reliability
  • Same-network battles enabled (for testing)

Infrastructure

ComponentStatus
Game Server✅ Port 8000, PM2 managed
Login Server✅ Port 8001, PM2 managed
Domainpoke.dexter.cash
SSL✅ Let's Encrypt via nginx

Phase 2: Wagering MVP 🚧

Status: IN PROGRESS (Target: January 2026)

Add real-money wagering with USDC escrow.

Completed

  • Wallet connection commands (/connectwallet, /mywallet)
  • Wallet registry (maps usernames to wallets)
  • Wager challenge system (/wager, /acceptwager)
  • Escrow wallet generation (per-match keypairs)
  • Settlement logic (pay winner on battle end)
  • House fee calculation
  • x402 facilitator integration

In Progress

  • Persistence layer - Move from in-memory to SQLite/Redis
  • Deposit timeout handling - Auto-cancel if deposits don't arrive
  • Refund mechanism - Return funds on cancelled wagers
  • Client wallet UI - Phantom connect button in browser

Blocked

  • Production wagering testing - Waiting on persistence layer
  • Public launch - Waiting on above items

Critical Before Launch

ItemPriorityStatus
Persist wager state to DB🔴 CriticalNot started
Persist escrow keypairs🔴 CriticalNot started
Implement refunds🔴 CriticalNot started
Client wallet connect button🟡 HighNot started
Deposit confirmation UI🟡 HighNot started
Settlement error handling🟡 HighBasic only

Phase 3: Live Odds & Spectator Betting 📅

Status: PLANNED (Target: Q1 2026)

Enable spectators to bet on matches with real-time odds.

Vision

┌─────────────────────────────────────────────────────────────────┐
│                     LIVE BATTLE BETTING                          │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  Player A (Ash)                    Player B (Gary)              │
│  ████████░░ 78%                    ░░████████ 22%               │
│                                                                  │
│  Current HP: 4/6 Pokémon           Current HP: 2/6 Pokémon      │
│  Type advantage this turn: YES      Critical hit chance: 12%    │
│                                                                  │
│  ┌─────────────────────────────────────────────────────────┐    │
│  │  BET NOW                                                  │    │
│  │  Ash wins: 1.28x payout    |    Gary wins: 4.50x payout │    │
│  │  [Bet $5 on Ash]           |    [Bet $5 on Gary]        │    │
│  └─────────────────────────────────────────────────────────┘    │
│                                                                  │
└─────────────────────────────────────────────────────────────────┘

Features

  • Real-time win probability calculation

    • Based on remaining Pokémon, HP, type matchups
    • Updates every turn
    • Machine learning model trained on battle data
  • Spectator betting

    • Watch any public battle
    • Place bets during the match
    • Odds adjust in real-time
  • x402 integration

    • All bets settled via x402 protocol
    • Automatic payouts on battle end
    • Tracked in Dexter marketplace

Technical Requirements

  • Battle state analysis engine
  • Probability calculation model
  • Real-time odds broadcast
  • Betting pool management
  • Dynamic payout calculation

Phase 4: AI Agents 📅

Status: PLANNED (Target: Q2-Q3 2026)

Train AI agents to play competitively, enabling provably fair matches.

Vision

The Problem with Human vs Human:

  • Players can collude
  • Players can throw matches
  • Hard to verify fair play

The Solution - AI vs AI:

  • Agents play to win by definition (that's their training objective)
  • No collusion possible
  • Provably fair - anyone can inspect the agent's decision logic
  • 24/7 availability

Architecture

┌─────────────────────────────────────────────────────────────────┐
│                      AI BATTLE SYSTEM                            │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  ┌─────────────┐    ┌─────────────┐    ┌─────────────┐         │
│  │  Agent A    │    │   Battle    │    │  Agent B    │         │
│  │  (RL Model) │◄──►│   Server    │◄──►│  (RL Model) │         │
│  └─────────────┘    └─────────────┘    └─────────────┘         │
│         │                 │                   │                 │
│         │    ┌────────────┴────────────┐     │                 │
│         │    │   Training Environment   │     │                 │
│         └───►│   (Self-Play Loop)       │◄────┘                 │
│              └──────────────────────────┘                       │
│                          │                                       │
│                          ▼                                       │
│              ┌──────────────────────────┐                       │
│              │    Model Improvements    │                       │
│              │    (Reinforcement)       │                       │
│              └──────────────────────────┘                       │
│                                                                  │
└─────────────────────────────────────────────────────────────────┘

Training Approach

Reinforcement Learning (RL):

  1. Agent plays against itself millions of times
  2. Wins = positive reward, losses = negative reward
  3. Agent learns which decisions lead to wins
  4. Model improves over time

Bootstrapping:

  • Start with heuristics (type charts, damage calcs)
  • Use existing damage calculators as baseline
  • Fine-tune with self-play

Libraries to explore:

  • poke-env - Python environment for Pokémon AI
  • stable-baselines3 - RL algorithms
  • Custom TypeScript integration with PS engine

Features

  • Agent vs Agent matches

    • Two AI models battle
    • Spectators can bet on outcome
    • Verifiable decision logs
  • Agent vs Human

    • Challenge the AI for practice
    • No USDC wagering - you don't win money
    • Victory burns 1,000 DEXTER tokens permanently
    • Every win against the AI reduces total DEXTER supply forever
    • Training ground for players to improve without financial risk
  • Agent leaderboard

    • Different agents compete
    • ELO ranking for AI models
    • Community can submit agents

Why This Matters

Human vs HumanAI vs AI
Can throwCannot throw
Can colludeCannot collude
Limited availability24/7 matches
Hard to verifyFully verifiable
Trust requiredTrustless

This is what makes PokeDexter a legitimate betting platform, not just a game with money attached.


Beyond Phase 4

Potential Future Features

  • Tournaments - Bracketed competitions with prize pools
  • Seasons - Ranked seasons with rewards
  • Team marketplace - Buy/sell competitive teams (NFTs?)
  • Streaming integration - Twitch/YouTube embedded betting
  • Mobile app - Native iOS/Android client
  • Other games - Expand beyond Pokémon (chess? card games?)

Long-term Vision

PokeDexter aims to be the premier platform for skill-based crypto gaming:

  1. Games where skill determines outcomes
  2. Provably fair through AI agents
  3. Real-time betting with live odds
  4. All settlements via x402 protocol
  5. Part of the Dexter ecosystem

How to Contribute

Interested in helping build PokeDexter?

Areas Needing Help

AreaSkills Needed
Persistence layerNode.js, SQLite/Redis
Client wallet UIJavaScript, React/Preact
AI trainingPython, RL, ML
Battle analysisPokémon mechanics, statistics
DocumentationTechnical writing

Contact


Timeline Summary

PhaseTargetKey Deliverable
Phase 1✅ DoneWorking battle system
Phase 2Jan 2026Wagering MVP
Phase 3Q1 2026Live odds betting
Phase 4Q2-Q3 2026AI agents